Displaying similar documents to “Thickness measures for Cantor sets.”

Projections of measures with small supports

Bilel Selmi (2021)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

In this paper, we use a characterization of the mutual multifractal Hausdorff dimension in terms of auxiliary measures to investigate the projections of measures with small supports.

Research Article. Multiscale Analysis of 1-rectifiable Measures II: Characterizations

Matthew Badger, Raanan Schul (2017)

Analysis and Geometry in Metric Spaces

Similarity:

A measure is 1-rectifiable if there is a countable union of finite length curves whose complement has zero measure. We characterize 1-rectifiable Radon measures μ in n-dimensional Euclidean space for all n ≥ 2 in terms of positivity of the lower density and finiteness of a geometric square function, which loosely speaking, records in an L2 gauge the extent to which μ admits approximate tangent lines, or has rapidly growing density ratios, along its support. In contrast with the classical...

Can interestingness measures be usefully visualized?

Robert Susmaga, Izabela Szczech (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

The paper presents visualization techniques for interestingness measures. The process of measure visualization provides useful insights into different domain areas of the visualized measures and thus effectively assists their comprehension and selection for different knowledge discovery tasks. Assuming a common domain form of the visualized measures, a set of contingency tables, which consists of all possible tables having the same total number of observations, is constructed. These...