The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On mixed problems for quasilinear second-order systems.”

Classical global solutions of the initial boundary value problems for a class of nonlinear parabolic equations

Guo Wang Chen (1994)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The existence, uniqueness and regularities of the generalized global solutions and classical global solutions to the equation u t = - A ( t ) u x 4 + B ( t ) u x 2 + g ( u ) x 2 + f ( u ) x + h ( u x ) x + G ( u ) with the initial boundary value conditions u ( - , t ) = u ( , t ) = 0 , u x 2 ( - , t ) = u x 2 ( , t ) = 0 , u ( x , 0 ) = ϕ ( x ) , or with the initial boundary value conditions u x ( - , t ) = u x ( , t ) = 0 , u x 3 ( - , t ) = u x 3 ( , t ) = 0 , u ( x , 0 ) = ϕ ( x ) , are proved. Moreover, the asymptotic behavior of these solutions is considered under some conditions.

Convergence of a method for solving the magnetostatic field in nonlinear media

Jozef Kačur, Jindřich Nečas, Josef Polák, Jiří Souček (1968)

Aplikace matematiky

Similarity:

For solving the boundary-value problem for potential of a stationary magnetic field in two dimensions in ferromagnetics it is possible to use a linearization based on the succesive approximations. In this paper the convergence of this method is proved under some conditions.