Displaying similar documents to “Axiomatic quantum field theory in terms of operator product expansions: general framework, and perturbation theory via Hochschild cohomology.”

Quantum symmetries in noncommutative C*-systems

Marcin Marciniak (1998)

Banach Center Publications

Similarity:

We introduce the notion of a completely quantum C*-system (A,G,α), i.e. a C*-algebra A with an action α of a compact quantum group G. Spectral properties of completely quantum systems are investigated. In particular, it is shown that G-finite elements form the dense *-subalgebra of A. Furthermore, properties of ergodic systems are studied. We prove that there exists a unique α-invariant state ω on A. Its properties are described by a family of modular operators σ z z acting on . It turns...

The symmetry algebra and conserved Currents for Klein-Gordon equation on quantum Minkowski space

MaŁgorzata Klimek (1997)

Banach Center Publications

Similarity:

The symmetry operators for Klein-Gordon equation on quantum Minkowski space are derived and their algebra is studied. The explicit form of the Leibniz rules for derivatives and variables for the case Z=0 is given. It is applied then with symmetry operators to the construction of the conservation law and the explicit form of conserved currents for Klein-Gordon equation.