Lattice-Free Polytopes and Their Diameter.
M. Deza, S. Onn (1995)
Discrete & computational geometry
Similarity:
M. Deza, S. Onn (1995)
Discrete & computational geometry
Similarity:
Bayer, Margaret M. (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Alon, N., Kleitman, D.J. (1997)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Stachel, Hellmuth (2000)
Journal for Geometry and Graphics
Similarity:
McMullen, Peter (1993)
Beiträge zur Algebra und Geometrie
Similarity:
Thomas Kahle, Walter Wenzel, Nihat Ay (2009)
Kybernetika
Similarity:
In this paper, we explore a connection between binary hierarchical models, their marginal polytopes, and codeword polytopes, the convex hulls of linear codes. The class of linear codes that are realizable by hierarchical models is determined. We classify all full dimensional polytopes with the property that their vertices form a linear code and give an algorithm that determines them.
R.P. Stanley (1986)
Discrete & computational geometry
Similarity:
P. Filliman (1990)
Discrete & computational geometry
Similarity:
R. Blind, G. Blind (1995)
Discrete & computational geometry
Similarity: