The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Hardy type inequality with non-isotropic kernels.”

Hardy space H associated to Schrödinger operator with potential satisfying reverse Hölder inequality.

Jacek Dziubanski, Jacek Zienkiewicz (1999)

Revista Matemática Iberoamericana

Similarity:

Let {T} be the semigroup of linear operators generated by a Schrödinger operator -A = Δ - V, where V is a nonnegative potential that belongs to a certain reverse Hölder class. We define a Hardy space H by means of a maximal function associated with the semigroup {T}. Atomic and Riesz transforms characterizations of H are shown.

A₁-regularity and boundedness of Calderón-Zygmund operators

Dmitry V. Rutsky (2014)

Studia Mathematica

Similarity:

The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded...

Eigenfunctions of the Hardy-Littlewood maximal operator

Leonardo Colzani, Javier Pérez Lázaro (2010)

Colloquium Mathematicae

Similarity:

We prove that peak shaped eigenfunctions of the one-dimensional uncentered Hardy-Littlewood maximal operator are symmetric and homogeneous. This implies that the norms of the maximal operator on L(p) spaces are not attained.