Displaying similar documents to “Reflector spaces over the 4-dimensional Kaneyuki-Kozai's para-Hermitian symmetric spaces.”

Einstein-Hermitian and anti-Hermitian 4-manifolds

Włodzimierz Jelonek (2003)

Annales Polonici Mathematici

Similarity:

We study 4-dimensional Einstein-Hermitian non-Kähler manifolds admitting a certain anti-Hermitian structure. We also describe Einstein 4-manifolds which are of cohomogeneity 1 with respect to an at least 4-dimensional group of isometries.

On a Bianchi-type identity for the almost hermitian manifolds

Giovanni Battista Rizza (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

Almost hermitian manifolds, whose Riemann curvature tensor satisfies an almost complex Bianchi-type identity, are considered. Some local and global theorems are proved. The special cases of parakähler manifolds and of Kähler manifolds are examined.

Almost hyper-Hermitian structures in bundle spaces over manifolds with almost contact 3 -structure

Francisco Martín Cabrera (1998)

Czechoslovak Mathematical Journal

Similarity:

We consider almost hyper-Hermitian structures on principal fibre bundles with one-dimensional fiber over manifolds with almost contact 3-structure and study relations between the respective structures on the total space and the base. This construction suggests the definition of a new class of almost contact 3-structure, which we called trans-Sasakian, closely connected with locally conformal quaternionic Kähler manifolds. Finally we give a family of examples of hypercomplex manifolds...

Hermitian Manifolds of Pointwise Constant Antiholomorphic Sectional Curvatures

Ganchev, Georgi, Kassabov, Ognian (2007)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary 53B35, Secondary 53C50. In dimension greater than four, we prove that if a Hermitian non-Kaehler manifold is of pointwise constant antiholomorphic sectional curvatures, then it is of constant sectional curvatures.