Some orthogonal polynomials in four variables.
Dunkl, Charles F. (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Dunkl, Charles F. (2008)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Alkahby, H., Ansong, G., Frempong-Mireku, P., Jalbout, A. (2001)
Electronic Journal of Differential Equations (EJDE) [electronic only]
Similarity:
Saïd Belmehdi, Stanisław Lewanowicz, André Ronveaux (1997)
Applicationes Mathematicae
Similarity:
Let be any sequence of classical orthogonal polynomials of a discrete variable. We give explicitly a recurrence relation (in k) for the coefficients in , in terms of the coefficients σ and τ of the Pearson equation satisfied by the weight function ϱ, and the coefficients of the three-term recurrence relation and of two structure relations obeyed by .
Leclerc, Bernard (1998)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Descouens, François, Lascoux, Alain (2005)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Hassan, G.F. (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Brunotte, Horst (2009)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Kirillov, Anatol N. (2007)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Koornwinder, Tom H. (2007)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Marija Stanić (2004)
Kragujevac Journal of Mathematics
Similarity:
Maciej Burnecki (1993)
Colloquium Mathematicae
Similarity:
Brenti, Francesco (2002)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity: