Displaying similar documents to “Estimates of the lower exponent of a two-dimensional linear system under Perron perturbations.”

Some remarks on comparison functions

Antoni Augustynowicz (2009)

Annales Polonici Mathematici

Similarity:

We answer some questions concerning Perron and Kamke comparison functions satisfying the Carathéodory condition. In particular, we show that a Perron function multiplied by a constant may not be a Perron function, and that not every comparison function is bounded by a comparison function with separated variables. Moreover, we investigate when a sum of Perron functions is a Perron function. We also present a criterion for comparison functions with separated variables.

Spatial decay estimates for the Forchheimer fluid equations in a semi-infinite cylinder

Xuejiao Chen, Yuanfei Li (2023)

Applications of Mathematics

Similarity:

The spatial behavior of solutions is studied in the model of Forchheimer equations. Using the energy estimate method and the differential inequality technology, exponential decay bounds for solutions are derived. To make the decay bounds explicit, we obtain the upper bound for the total energy. We also extend the study of spatial behavior of Forchheimer porous material in a saturated porous medium.

Optimal asymptotic estimates for the volume of internal inhomogeneities in terms of multiple boundary measurements

Yves Capdeboscq, Michael S. Vogelius (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We recently derived a very general representation formula for the boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction (cf. Capdeboscq and Vogelius (2003)). In this paper we show how this representation formula may be used to obtain very accurate estimates for the size of the inhomogeneities in terms of multiple boundary measurements. As demonstrated by our computational experiments, these estimates are significantly better than previously...