Conic sections in space defined by intersection conditions.
Schröcker, Hans-Peter (2005)
Beiträge zur Algebra und Geometrie
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Schröcker, Hans-Peter (2005)
Beiträge zur Algebra und Geometrie
Similarity:
Metsch, K. (2003)
Advances in Geometry
Similarity:
Nagy, Benedek (2004)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Kinga Cudna-Salmanowicz, Jan Jakóbowski (2007)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
H. A. Wilbrink [Geom. Dedicata 12 (1982)] considered a class of Minkowski planes whose restrictions, called residual planes, are nearaffine planes. Our study goes in the opposite direction: what conditions on a nearaffine plane are necessary and sufficient to get an extension which is a hyperbola structure.
G. Hanssens, H. Van Maldeghem (1989)
Compositio Mathematica
Similarity:
Jan Jakóbowski (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
There are three kinds of Benz planes: Möbius planes, Laguerre planes and Minkowski planes. A Minkowski plane satisfying an additional axiom is connected with some other structure called a nearaffine plane. We construct an analogous structure for a Laguerre plane. Moreover, our description is common for both cases.
H. S. Ruse (1935)
Compositio Mathematica
Similarity:
Biondi, P., Lo Re, P.M.L., Storme, L. (2007)
Beiträge zur Algebra und Geometrie
Similarity:
A. Alzati, M. Bertolini (1990)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Johnson, N.L. (1989)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Johnson, N.L. (1982)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Martin Peternell, Helmut Pottmann (2002)
RACSAM
Similarity:
Se estudia la aproximación en el espacio de planos. Se introduce una medida de la distancia en este espacio, con la que pueden resolverse problemas de modelado con superficies desarrollables mediante algoritmos de aproximación de curvas. Además, el reconocimiento y reconstrucción de caras planas en nubes de puntos aparecen como un problema "clustering" en el espacio de planos. La aplicabilidad práctica de estos resultados se muestra en varios ejemplos.