Displaying similar documents to “Solutions to time-fractional diffusion-wave equation in cylindrical coordinates.”

Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions

Boyadjiev, Lyubomir, Al-Saqabi, Bader (2012)

Mathematica Balkanica New Series

Similarity:

MSC 2010: 35R11, 42A38, 26A33, 33E12 The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the Weyl space-fractional operator. The solutions obtained are in integral form whose kernels are Green functions expressed...

Solving Fractional Diffusion-Wave Equations Using a New Iterative Method

Daftardar-Gejji, Varsha, Bhalekar, Sachin (2008)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 26A33, 31B10 In the present paper a New Iterative Method [1] has been employed to find solutions of linear and non-linear fractional diffusion-wave equations. Illustrative examples are solved to demonstrate the efficiency of the method. * This work has partially been supported by the grant F. No. 31-82/2005(SR) from the University Grants Commission, N. Delhi, India.

Maximum Principle and Its Application for the Time-Fractional Diffusion Equations

Luchko, Yury (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 33E12, 35B45, 35B50, 35K99, 45K05 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary In the paper, maximum principle for the generalized time-fractional diffusion equations including the multi-term diffusion equation and the diffusion equation of distributed order is formulated and discussed. In these equations, the time-fractional derivative is defined in the Caputo sense. In contrast to the Riemann-Liouville fractional derivative,...

Nonlinear Time-Fractional Differential Equations in Combustion Science

Pagnini, Gianni (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 34A08 (main), 34G20, 80A25 The application of Fractional Calculus in combustion science to model the evolution in time of the radius of an isolated premixed flame ball is highlighted. Literature equations for premixed flame ball radius are rederived by a new method that strongly simplifies previous ones. These equations are nonlinear time-fractional differential equations of order 1/2 with a Gaussian underlying diffusion process. Extending the analysis to self-similar...

On Fractional Helmholtz Equations

Samuel, M., Thomas, Anitha (2010)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33, 33E12, 33C60, 35R11 In this paper we derive an analytic solution for the fractional Helmholtz equation in terms of the Mittag-Leffler function. The solutions to the fractional Poisson and the Laplace equations of the same kind are obtained, again represented by means of the Mittag-Leffler function. In all three cases the solutions are represented also in terms of Fox's H-function.

Integral Transforms Method to Solve a Time-Space Fractional Diffusion Equation

Nikolova, Yanka, Boyadjiev, Lyubomir (2010)

Fractional Calculus and Applied Analysis

Similarity:

Mathematical Subject Classification 2010: 35R11, 42A38, 26A33, 33E12. The method of integral transforms based on using a fractional generalization of the Fourier transform and the classical Laplace transform is applied for solving Cauchy-type problem for the time-space fractional diffusion equation expressed in terms of the Caputo time-fractional derivative and a generalized Riemann-Liouville space-fractional derivative.

Professor Rudolf Gorenflo and his Contribution to Fractional Calculus

Luchko, Yury, Mainardi, Francesco, Rogosin, Sergei (2011)

Fractional Calculus and Applied Analysis

Similarity:

MSC 2010: 26A33 Dedicated to Professor Rudolf Gorenflo on the occasion of his 80th anniversary This paper presents a brief overview of the life story and professional career of Prof. R. Gorenflo - a well-known mathematician, an expert in the field of Differential and Integral Equations, Numerical Mathematics, Fractional Calculus and Applied Analysis, an interesting conversational partner, an experienced colleague, and a real friend. Especially his role in the modern Fractional...