A generalization of Pillai's arithmetical function involving regular convolutions
László Tóth (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
László Tóth (1998)
Acta Mathematica et Informatica Universitatis Ostraviensis
Similarity:
Tóth, László (1997)
Mathematica Pannonica
Similarity:
Haukkanen, P., Ruokonen, P. (1997)
Portugaliae Mathematica
Similarity:
Jean-Louis Nicolas, Varanasi Sitaramaiah (2002)
Journal de théorie des nombres de Bordeaux
Similarity:
The identical equation for multiplicative functions established by R. Vaidyanathaswamy in the case of Dirichlet convolution in 1931 has been generalized to multiplicativity preserving -convolutions satisfying certain conditions (cf. [7]) which can be called as Lehmer-Narkiewicz convolutions for some reasons. In this paper we prove the converse.
J. Kucharczak (1973)
Colloquium Mathematicae
Similarity:
Kazimierz Urbanik (1967)
Colloquium Mathematicum
Similarity:
S. R. Yadava (1972)
Matematički Vesnik
Similarity:
Brian Fisher, Emin Özcag (1991)
Publications de l'Institut Mathématique
Similarity:
Haukkanen, Pentti (1989)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Kazimierz Urbanik (1987)
Colloquium Mathematicum
Similarity: