Displaying similar documents to “A characterization of exponential stability for periodic evolution families in terms of lower semicontinuous functionals.”

On the exponential stability and dichotomy of C 0 -semigroups

Phóng Vũ (1999)

Studia Mathematica


A characterization of exponentially dichotomic and exponentially stable C 0 -semigroups in terms of solutions of an operator equation of Lyapunov type is presented. As a corollary a new and shorter proof of van Neerven’s recent characterization of exponential stability in terms of boundedness of convolutions of a semigroup with almost periodic functions is given.

Banach function spaces and exponential instability of evolution families

Mihail Megan, Adina Luminiţa Sasu, Bogdan Sasu (2003)

Archivum Mathematicum


In this paper we give necessary and sufficient conditions for uniform exponential instability of evolution families in Banach spaces, in terms of Banach function spaces. Versions of some well-known theorems due to Datko, Neerven, Rolewicz and Zabczyk, are obtained for the case of uniform exponential instability of evolution families.

Almost periodic and strongly stable semigroups of operators

Vũ Phóng (1997)

Banach Center Publications


This paper is chiefly a survey of results obtained in recent years on the asymptotic behaviour of semigroups of bounded linear operators on a Banach space. From our general point of view, discrete families of operators T n : n = 0 , 1 , . . . on a Banach space X (discrete one-parameter semigroups), one-parameter C 0 -semigroups T ( t ) : t 0 on X (strongly continuous one-parameter semigroups), are particular cases of representations of topological abelian semigroups. Namely, given a topological abelian semigroup S, a family...