Vanishing of Hochschild cohomology for affine group schemes and rigidity of homomorphisms between algebraic groups.
Margaux, Benedictus (2009)
Documenta Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Margaux, Benedictus (2009)
Documenta Mathematica
Similarity:
J. Rohlfs (1984/85)
Mathematische Zeitschrift
Similarity:
Min Ho Lee (2003)
Acta Arithmetica
Similarity:
Helmut Strade, Rolf Farnsteiner (1991)
Mathematische Zeitschrift
Similarity:
Zbigniew Jelonek, Marek Karaś (2002)
Colloquium Mathematicae
Similarity:
Assume that X,Y are integral noetherian affine schemes. Let f:X → Y be a dominant, generically finite morphism of finite type. We show that the set of points at which the morphism f is not finite is either empty or a hypersurface. An example is given to show that this is no longer true in the non-noetherian case.
Baker, Andrew (2000)
Homology, Homotopy and Applications
Similarity:
Robin Hartshorne (1975)
Publications Mathématiques de l'IHÉS
Similarity:
Schuhmacher, Frank (2004)
Homology, Homotopy and Applications
Similarity:
Panin, Ivan, Zainoulline, Kirill (2003)
Documenta Mathematica
Similarity:
Paul Cherenack (1982)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
E.B. Kuisch, Robert W. van der Waall (1996)
Manuscripta mathematica
Similarity:
Huynh Mùi (1986)
Mathematische Zeitschrift
Similarity:
Akira Masuoka (2003)
Banach Center Publications
Similarity:
Baker, Andrew (1994)
The New York Journal of Mathematics [electronic only]
Similarity: