On an Interpolation Process of Lagrange-Hermite Type
Giuseppe Mastroianni, Gradimir V. Milovanović, Incoronata Notarangelo (2012)
Publications de l'Institut Mathématique
Similarity:
Giuseppe Mastroianni, Gradimir V. Milovanović, Incoronata Notarangelo (2012)
Publications de l'Institut Mathématique
Similarity:
Thomas Sonar (2005)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
We consider the classical Interpolating Moving Least Squares (IMLS) interpolant as defined by Lancaster and Šalkauskas [Math. Comp. 37 (1981) 141–158] and compute the first and second derivative of this interpolant at the nodes of a given grid with the help of a basic lemma on Shepard interpolants. We compare the difference formulae with those defining optimal finite difference methods and discuss their deviation from optimality.
Chen, Zhixiong (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Prasad, J. (1992)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Melendez, Yolanda (1994)
Portugaliae Mathematica
Similarity:
J. M. Martínez (1978)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Zabel, Ahmed, Alghamdi, Maryam (2011)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Ţincu, Ioan (2007)
General Mathematics
Similarity: