Displaying similar documents to “Gröbner bases in geometry theorem proving and simplest degeneracy conditions.”

Border bases and kernels of homomorphisms and of derivations

Janusz Zieliński (2010)

Open Mathematics

Similarity:

Border bases are an alternative to Gröbner bases. The former have several more desirable properties. In this paper some constructions and operations on border bases are presented. Namely; the case of a restriction of an ideal to a polynomial ring (in a smaller number of variables), the case of the intersection of two ideals, and the case of the kernel of a homomorphism of polynomial rings. These constructions are applied to the ideal of relations and to factorizable derivations. ...

Reduction of Power Series in a Polydisc with Respect to a Gröbner Basis

Justyna Szpond (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We deal with a reduction of power series convergent in a polydisc with respect to a Gröbner basis of a polynomial ideal. The results are applied to proving that a Nash function whose graph is algebraic in a "large enough" polydisc, must be a polynomial. Moreover, we give an effective method for finding this polydisc.

The F4-algorithm for Euclidean rings

Afshan Sadiq (2010)

Open Mathematics

Similarity:

In this short note, we extend Faugére’s F4-algorithm for computing Gröbner bases to polynomial rings with coefficients in an Euclidean ring. Instead of successively reducing single S-polynomials as in Buchberger’s algorithm, the F4-algorithm is based on the simultaneous reduction of several polynomials.

Solving linear systems of equations over integers with Gröbner bases

Amir Hashemi (2014)

Acta Arithmetica

Similarity:

We introduce a novel application of Gröbner bases to solve (non-homogeneous) systems of integer linear equations over integers. For this purpose, we present a new algorithm which ascertains whether a linear system of equations has an integer solution or not; in the affirmative case, the general integer solution of the system is determined.

Aspects of unconditionality of bases in spaces of compact operators

James R. Holub (1998)

Annales Polonici Mathematici

Similarity:

E. Tutaj has introduced classes of Schauder bases termed "unconditional-like" (UL) and "unconditional-like*" (UL*) whose intersection is the class of unconditional bases. In view of this association with unconditional bases, it is interesting to note that there exist Banach spaces which have no unconditional basis and yet have a basis of one of these two types (e.g., the space 𝓞[0,1]). In the same spirit, we show in this paper that the space of all compact operators on a reflexive Banach...