Generalized inverses of bordered matrices.
Bapat, R.B., Zheng, Bing (2003)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Bapat, R.B., Zheng, Bing (2003)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Beasley, LeRoy B. (1999)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Bapat, R.B. (2007)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Catral, Minerva, Olesky, Dale D., van den Driessche, Pauline (2009)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Zhao, Jiemei, Bu, Changjiang (2010)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Glebsky, Lev, Rivera, Luis Manuel (2009)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Saunders, B. David, Storjohann, Arne, Villard, Gilles (2004)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Bu, Changjiang, Zhao, Jiemei, Zhang, Kuize (2009)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Canto, Rafael, Ricarte, Beatriz, Urbano, Ana Maria (2010)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Xiao, Qing-Feng, Hu, Xi-Yan, Zhang, Lei (2009)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Li, Chi-Kwong, Milligan, Thomas, Trosset, Michael W. (2010)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Doering, Elizabeth, Michael, T.S., Shader, Bryan L. (2011)
ELA. The Electronic Journal of Linear Algebra [electronic only]
Similarity:
Seok-Zun Song, Young-Bae Jun (2006)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
The zero-term rank of a matrix is the minimum number of lines (row or columns) needed to cover all the zero entries of the given matrix. We characterize the linear operators that preserve the zero-term rank of the m × n integer matrices. That is, a linear operator T preserves the zero-term rank if and only if it has the form T(A)=P(A ∘ B)Q, where P, Q are permutation matrices and A ∘ B is the Schur product with B whose entries are all nonzero integers.