Displaying similar documents to “Approximation of singularly perturbed parabolic reaction-diffusion equations with nonsmooth data.”

Inverse Problems for Parabolic Equation with Discontinuous Coefficients

V. Dinakar, N. Barani Balan, K. Balachandran (2017)

Nonautonomous Dynamical Systems

Similarity:

We consider the reaction-diffusion equation with discontinuities in the diffusion coefficient and the potential term. We start by deriving the Carleman estimate for the discontinuous reaction-diffusion operator which is deployed in the inverse problems of finding the stability result of the two discontinuous coefficients from the internal observations of the given parabolic equation.

A solution of nonlinear diffusion problems by semilinear reaction-diffusion systems

Hideki Murakawa (2009)

Kybernetika

Similarity:

This paper deals with nonlinear diffusion problems involving degenerate parabolic problems, such as the Stefan problem and the porous medium equation, and cross-diffusion systems in population ecology. The degeneracy of the diffusion and the effect of cross-diffusion, that is, nonlinearities of the diffusion, complicate its analysis. In order to avoid the nonlinearities, we propose a reaction-diffusion system with solutions that approximate those of the nonlinear diffusion problems....

Determination of a diffusion coefficient in a quasilinear parabolic equation

Fatma Kanca (2017)

Open Mathematics

Similarity:

This paper investigates the inverse problem of finding the time-dependent diffusion coefficient in a quasilinear parabolic equation with the nonlocal boundary and integral overdetermination conditions. Under some natural regularity and consistency conditions on the input data the existence, uniqueness and continuously dependence upon the data of the solution are shown. Finally, some numerical experiments are presented.

Fast optical tracking of diffusion in time-dependent environment of brain extracellular space

Hrabě, Jan

Similarity:

An improved version of the Integrative Optical Imaging (IOI) method for diffusion measurements in a geometrically complex environment of the brain extracellular space has been developed. We present a theory for this Fast Optical Tracking Of Diffusion (FOTOD) which incorporates a time-dependent effective diffusion coefficient in homogeneous anisotropic media with time-dependent nonspecific linear clearance. FOTOD can be used to measure rapid changes in extracellular diffusion permeability...