The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Inversion of the dual Dunkl-Sonine transform on using Dunkl wavelets.”

Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets

Fitouhi, Ahmed, Bettaibi, Néji, Binous, Wafa (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60 This paper aims to study the q-wavelets and the continuous q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using the q-Riemann-Liouville and the q-Weyl transforms, we give some relations between the continuous q-wavelet transform, studied in [3], and the continuous q-wavelet transform associated with the q-Bessel operator, and we deduce formulas which give the inverse operators...

Spectrum of Functions for the Dunkl Transform on R^d

Mejjaoli, Hatem, Trimèche, Khalifa (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 42B10 In this paper, we establish real Paley-Wiener theorems for the Dunkl transform on R^d. More precisely, we characterize the functions in the Schwartz space S(R^d) and in L^2k(R^d) whose Dunkl transform has bounded, unbounded, convex and nonconvex support.

An Analogue of Beurling-Hörmander’s Theorem for the Dunkl-Bessel Transform

Mejjaoli, Hatem (2006)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: Primary 35R10, Secondary 44A15 We establish an analogue of Beurling-Hörmander’s theorem for the Dunkl-Bessel transform FD,B on R(d+1,+). We deduce an analogue of Gelfand-Shilov, Hardy, Cowling-Price and Morgan theorems on R(d+1,+) by using the heat kernel associated to the Dunkl-Bessel-Laplace operator.

On the Uniform Convergence of Partial Dunkl Integrals in Besov-Dunkl Spaces

Abdelkefi, Chokri, Sifi, Mohamed (2006)

Fractional Calculus and Applied Analysis

Similarity:

2000 Mathematics Subject Classification: 44A15, 44A35, 46E30 In this paper we prove that the partial Dunkl integral ST(f) of f converges to f, as T → +∞ in L^∞(νµ) and we show that the Dunkl transform Fµ(f) of f is in L^1(νµ) when f belongs to a suitable Besov-Dunkl space. We also give sufficient conditions on a function f in order that the Dunkl transform Fµ(f) of f is in a L^p -space. * Supported by 04/UR/15-02.