A classification of contact metric 3-manifolds with constant -sectional and -sectional curvatures.
Gouli-Andreou, F., Xenos, Ph.J. (2002)
Beiträge zur Algebra und Geometrie
Similarity:
Gouli-Andreou, F., Xenos, Ph.J. (2002)
Beiträge zur Algebra und Geometrie
Similarity:
WŁodzimierz Jelonek (1998)
Colloquium Mathematicae
Similarity:
The aim of this paper is to give a characterization of regular K-contact A-manifolds.
Dwivedi, Mohit Kumar, Kim, Jeong-Sik (2011)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Hiroshi Endo (1993)
Colloquium Mathematicae
Similarity:
On Sasakian manifolds, Matsumoto and Chūman [3] defined a contact Bochner curvature tensor (see also Yano [7]) which is invariant under D-homothetic deformations (for D-homothetic deformations, see Tanno [5]). On the other hand, Tricerri and Vanhecke [6] defined a general Bochner curvature tensor with conformal invariance on almost Hermitian manifolds. In this paper we define an extended contact Bochner curvature tensor which is invariant under D-homothetic deformations of contact metric...
Włodzimierz Jelonek (2000)
Annales Polonici Mathematici
Similarity:
The aim of this paper is to give an easy explicit description of 3-K-contact structures on certain SO(3)-principal fibre bundles over quaternionic-Kähler manifolds.
Ozturk, Hakan, Aktan, Nesip, Murathan, Cengizhan (2010)
APPS. Applied Sciences
Similarity:
Yilmaz, Münevver Yildirim, Bektaş, Mehmet (2010)
Acta Universitatis Apulensis. Mathematics - Informatics
Similarity:
Alicia Prieto-Martín, Luis M. Fernández, Ana M. Fuentes (2013)
Publications de l'Institut Mathématique
Similarity:
Zbigniew Olszak (2013)
Publications de l'Institut Mathématique
Similarity:
Ewert-Krzemieniewski, Stanisław (2003)
Zeszyty Naukowe Uniwersytetu Jagiellońskiego. Universitatis Iagellonicae Acta Mathematica
Similarity:
H. G. Nagaraja (2011)
Matematički Vesnik
Similarity:
Erdem, Sadettin (2007)
Beiträge zur Algebra und Geometrie
Similarity: