The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Torus knots extremizing the Möbius energy.”

An operator invariant for handlebody-knots

Kai Ishihara, Atsushi Ishii (2012)

Fundamenta Mathematicae

Similarity:

A handlebody-knot is a handlebody embedded in the 3-sphere. We improve Luo's result about markings on a surface, and show that an IH-move is sufficient to investigate handlebody-knots with spatial trivalent graphs without cut-edges. We also give fundamental moves with a height function for handlebody-tangles, which helps us to define operator invariants for handlebody-knots. By using the fundamental moves, we give an operator invariant.

Torus knots that cannot be untied by twisting.

Mohamed Ait Nouh, Akira Yasuhara (2001)

Revista Matemática Complutense

Similarity:

We give a necessary condition for a torus knot to be untied by a single twisting. By using this result, we give infinitely many torus knots that cannot be untied by a single twisting.

Every knot is a billiard knot

P. V. Koseleff, D. Pecker (2014)

Banach Center Publications

Similarity:

We show that every knot can be realized as a billiard trajectory in a convex prism. This proves a conjecture of Jones and Przytycki.