Displaying similar documents to “Counting determinants of Fibonacci-Hessenberg matrices using LU factorizations.”

Explicit formulas for the constituent matrices. Application to the matrix functions

R. Ben Taher, M. Rachidi (2015)

Special Matrices

Similarity:

We present a constructive procedure for establishing explicit formulas of the constituents matrices. Our approach is based on the tools and techniques from the theory of generalized Fibonacci sequences. Some connections with other results are supplied. Furthermore,we manage to provide tractable expressions for the matrix functions, and for illustration purposes we establish compact formulas for both the matrix logarithm and the matrix pth root. Some examples are also provided. ...

Factorizations for q-Pascal matrices of two variables

Thomas Ernst (2015)

Special Matrices

Similarity:

In this second article on q-Pascal matrices, we show how the previous factorizations by the summation matrices and the so-called q-unit matrices extend in a natural way to produce q-analogues of Pascal matrices of two variables by Z. Zhang and M. Liu as follows [...] We also find two different matrix products for [...]

Some Special Matrices of Real Elements and Their Properties

Xiquan Liang, Fuguo Ge, Xiaopeng Yue (2006)

Formalized Mathematics

Similarity:

This article describes definitions of positive matrix, negative matrix, nonpositive matrix, nonnegative matrix, nonzero matrix, module matrix of real elements and their main properties, and we also give the basic inequalities in matrices of real elements.

Properties of the determinant of a rectangular matrix

Anna Makarewicz, Piotr Pikuta, Dominik Szałkowski (2014)

Annales Universitatis Mariae Curie-Sklodowska, sectio A – Mathematica

Similarity:

In this paper we present new identities for the Radić’s determinant of a rectangular matrix. The results include representations of the determinant of a rectangular matrix as a sum of determinants of square matrices and description how the determinant is affected by operations on columns such as interchanging columns, reversing columns or decomposing a single column.

Generalizations of Nekrasov matrices and applications

Ljiljana Cvetković, Vladimir Kostić, Maja Nedović (2015)

Open Mathematics

Similarity:

In this paper we present a nonsingularity result which is a generalization of Nekrasov property by using two different permutations of the index set. The main motivation comes from the following observation: matrices that are Nekrasov matrices up to the same permutations of rows and columns, are nonsingular. But, testing all the permutations of the index set for the given matrix is too expensive. So, in some cases, our new nonsingularity criterion allows us to use the results already...