Displaying similar documents to “Sudoku graphs are integral.”

The inertia of unicyclic graphs and bicyclic graphs

Ying Liu (2013)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let G be a graph with n vertices and ν(G) be the matching number of G. The inertia of a graph G, In(G) = (n₊,n₋,n₀) is an integer triple specifying the numbers of positive, negative and zero eigenvalues of the adjacency matrix A(G), respectively. Let η(G) = n₀ denote the nullity of G (the multiplicity of the eigenvalue zero of G). It is well known that if G is a tree, then η(G) = n - 2ν(G). Guo et al. [Ji-Ming Guo, Weigen Yan and Yeong-Nan Yeh. On the nullity and the matching number...

Controllable graphs

D. Cvetković, P. Rowlinson, Z. Stanić, M. G. Yoon (2011)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

Similarity:

Signed graphs with at most three eigenvalues

Farzaneh Ramezani, Peter Rowlinson, Zoran Stanić (2022)

Czechoslovak Mathematical Journal

Similarity:

We investigate signed graphs with just 2 or 3 distinct eigenvalues, mostly in the context of vertex-deleted subgraphs, the join of two signed graphs or association schemes.