Quasicone metric spaces and generalizations of Caristi Kirk's theorem.
Abdeljawad, Thabet, Karapinar, Erdal (2009)
Fixed Point Theory and Applications [electronic only]
Similarity:
Abdeljawad, Thabet, Karapinar, Erdal (2009)
Fixed Point Theory and Applications [electronic only]
Similarity:
Janusz Matkowski (1980)
Časopis pro pěstování matematiky
Similarity:
Lin, Lai-Jiu, Wang, Sung-Yu, Ansari, Qamrul Hasan (2011)
Fixed Point Theory and Applications [electronic only]
Similarity:
Amini-Harandi, A., O'Regan, D. (2010)
Fixed Point Theory and Applications [electronic only]
Similarity:
Khojasteh, Farshid, Goodarzi, Zahra, Razani, Abdolrahman (2010)
Fixed Point Theory and Applications [electronic only]
Similarity:
Latif, Abdul, Shaddad, Fawzia Y. (2010)
Fixed Point Theory and Applications [electronic only]
Similarity:
Bapurao Chandra Dhage (1999)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
A fixed point theorem is proved for non-self multi-valued mappings in a metrically convex complete metric space satisfying a slightly stronger contraction condition than in Rhoades [3] and under a weaker boundary condition than in Itoh [2] and Rhoades [3].