Large automorphism groups of 16-dimensional planes are Lie groups. II.
Salzmann, Helmut (1999)
Journal of Lie Theory
Similarity:
Salzmann, Helmut (1999)
Journal of Lie Theory
Similarity:
Herbert Abels (1981)
Journal für die reine und angewandte Mathematik
Similarity:
Bickel, Holger (1995)
Journal of Lie Theory
Similarity:
Richard Bödi (1994)
Mathematische Zeitschrift
Similarity:
Rosenfeld, Boris A. (1993)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
G. Vranceanu (1964)
Annales Polonici Mathematici
Similarity:
S.G. Dani (1992)
Manuscripta mathematica
Similarity:
Immervoll, Stefan (2003)
Advances in Geometry
Similarity:
Teichmann, Josef (2001)
Journal of Lie Theory
Similarity:
Dwyer, W.G. (1998)
Documenta Mathematica
Similarity:
R. Felix, R.W. Henrichs, H. Skudlarek (1979)
Mathematische Zeitschrift
Similarity:
U. Dempwolff (1985)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Kinga Cudna-Lasecka, Jan Jakóbowski (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
The paper deals with nearaffine planes described by H. A. Wilbrink. We consider their central automorphisms, i.e. automorphisms satisfying the Veblen condition, which become central collineations in connected projective planes. Moreover, a concept of central pseudo-automorphism is considered, i.e. some bijections in a nearaffine plane are not automorphisms but they become central collineations in the related projective planes.
Tevelev, E.A. (2000)
Journal of Lie Theory
Similarity: