Displaying similar documents to “Waiting for m mutations.”

Epidemiological Models With Parametric Heterogeneity : Deterministic Theory for Closed Populations

A.S. Novozhilov (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

We present a unified mathematical approach to epidemiological models with parametric heterogeneity, i.e., to the models that describe individuals in the population as having specific parameter (trait) values that vary from one individuals to another. This is a natural framework to model, e.g., heterogeneity in susceptibility or infectivity of individuals. We review, along with the necessary theory, the results obtained using the discussed...

An age-dependent model describing the spread of panleucopenia virus within feline populations

W. E. Fitzgibbon, M. Langlais, J. J. Morgan, D. Pontier, C. Wolf (2003)

Banach Center Publications

Similarity:

Global existence results and long time behavior are provided for a mathematical model describing the propagation of Feline Panleucopenia Virus (FPLV) within a domestic cat population; two transmission modes are involved: a direct one from infective cats to susceptible ones, and an indirect one from the contaminated environment to susceptible cats. A more severe impact of the virus on young cats requires an age-structured model.

Verified solution method for population epidemiology models with uncertainty

Joshua A. Enszer, Mark A. Stadtherr (2009)

International Journal of Applied Mathematics and Computer Science

Similarity:

Epidemiological models can be used to study the impact of an infection within a population. These models often involve parameters that are not known with certainty. Using a method for verified solution of nonlinear dynamic models, we can bound the disease trajectories that are possible for given bounds on the uncertain parameters. The method is based on the use of an interval Taylor series to represent dependence on time and the use of Taylor models to represent dependence on uncertain...

Ancestral processes with selection: Branching and Moran models

Ellen Baake, Robert Bialowons (2008)

Banach Center Publications

Similarity:

We consider two versions of stochastic population models with mutation and selection. The first approach relies on a multitype branching process; here, individuals reproduce and change type (i.e., mutate) independently of each other, without restriction on population size. We analyse the equilibrium behaviour of this model, both in the forward and in the backward direction of time; the backward point of view emerges if the ancestry of individuals chosen randomly from the present population...