Displaying similar documents to “Stability analysis of fractional differential systems with order lying in ( 1 , 2 ) .”

Design of unknown input fractional-order observers for fractional-order systems

Ibrahima N'Doye, Mohamed Darouach, Holger Voos, Michel Zasadzinski (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper considers a method of designing fractional-order observers for continuous-time linear fractional-order systems with unknown inputs. Conditions for the existence of these observers are given. Sufficient conditions for the asymptotical stability of fractional-order observer errors with the fractional order α satisfying 0 < α < 2 are derived in terms of linear matrix inequalities. Two numerical examples are given to demonstrate the applicability of the proposed approach,...

Fractional descriptor continuous-time linear systems described by the Caputo-Fabrizio derivative

Tadeusz Kaczorek, Kamil Borawski (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

The Weierstrass-Kronecker theorem on the decomposition of the regular pencil is extended to fractional descriptor continuous-time linear systems described by the Caputo-Fabrizio derivative. A method for computing solutions of continuous-time systems is presented. Necessary and sufficient conditions for the positivity and stability of these systems are established. The discussion is illustrated with a numerical example.

Theorems on some families of fractional differential equations and their applications

Gülçin Bozkurt, Durmuş Albayrak, Neşe Dernek (2019)

Applications of Mathematics

Similarity:

We use the Laplace transform method to solve certain families of fractional order differential equations. Fractional derivatives that appear in these equations are defined in the sense of Caputo fractional derivative or the Riemann-Liouville fractional derivative. We first state and prove our main results regarding the solutions of some families of fractional order differential equations, and then give examples to illustrate these results. In particular, we give the exact solutions for...

An analysis of the stability boundary for a linear fractional difference system

Tomáš Kisela (2015)

Mathematica Bohemica

Similarity:

This paper deals with basic stability properties of a two-term linear autonomous fractional difference system involving the Riemann-Liouville difference. In particular, we focus on the case when eigenvalues of the system matrix lie on a boundary curve separating asymptotic stability and unstability regions. This issue was posed as an open problem in the paper J. Čermák, T. Kisela, and L. Nechvátal (2013). Thus, the paper completes the stability analysis of the corresponding fractional...