Cauchy-Kowalewski theorems in Clifford analysis : a survey
Brackx, F., Delanghe, R., Sommen, F.
Similarity:
Brackx, F., Delanghe, R., Sommen, F.
Similarity:
Luigi Paganoni, S. Paganoni Martegalli (1989)
Aequationes mathematicae
Similarity:
Neelon, Tejinder S. (2001)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Caragiu, Florin, Caragiu, Ioana (2001)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Bui Dac Tac (1991)
Annales Polonici Mathematici
Similarity:
Studying the sequential completeness of the space of germs of Banach-valued holomorphic functions at a points of a metric vector space some theorems on extension of holomorphic maps on Riemann domains over topological vector spaces with values in some locally convex analytic spaces are proved. Moreover, the extendability of holomorphic maps with values in complete C-spaces to the envelope of holomorphy for the class of bounded holomorphic functions is also established. These results...
W. Tutschke (1986)
Matematički Vesnik
Similarity:
L. R. Hunt, J. J. Murray, M. J. Strauss (1979)
Colloquium Mathematicae
Similarity:
Peter Pflug (2003)
Annales Polonici Mathematici
Similarity:
This note is an attempt to describe a part of the historical development of the research on separately holomorphic functions.
Ludwik M. Drużkowski (1980)
Annales Polonici Mathematici
Similarity:
Shamoyan, Romi, Li, Songxiao (2008)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Tutschke, Wolfgang (2002)
Boletín de la Asociación Matemática Venezolana
Similarity:
S. Bullett, C. Penrose (2001)
Fundamenta Mathematicae
Similarity:
Holomorphic correspondences are multivalued maps between Riemann surfaces Z and W, where Q̃₋ and Q̃₊ are (single-valued) holomorphic maps from another Riemann surface X onto Z and W respectively. When Z = W one can iterate f forwards, backwards or globally (allowing arbitrarily many changes of direction from forwards to backwards and vice versa). Iterated holomorphic correspondences on the Riemann sphere display many of the features of the dynamics of Kleinian groups and rational maps,...
Armen Edigarian, Said El Marzguioui, Jan Wiegerinck (2010)
Annales Polonici Mathematici
Similarity:
We prove that the image of a finely holomorphic map on a fine domain in ℂ is a pluripolar subset of ℂⁿ. We also discuss the relationship between pluripolar hulls and finely holomorphic functions.