The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Contractions of product density operators of systems of identical fermions and bosons.”

On order structure and operators in L ∞(μ)

Irina Krasikova, Miguel Martín, Javier Merí, Vladimir Mykhaylyuk, Mikhail Popov (2009)

Open Mathematics

Similarity:

It is known that there is a continuous linear functional on L ∞ which is not narrow. On the other hand, every order-to-norm continuous AM-compact operator from L ∞(μ) to a Banach space is narrow. We study order-to-norm continuous operators acting from L ∞(μ) with a finite atomless measure μ to a Banach space. One of our main results asserts that every order-to-norm continuous operator from L ∞(μ) to c 0(Γ) is narrow while not every such an operator is AM-compact.

Trace formulae for p-hyponormal operators

Muneo Chō, Tadasi Huruya (2004)

Studia Mathematica

Similarity:

The purpose of this paper is to introduce mosaics and principal functions of p-hyponormal operators and give a trace formula. Also we introduce p-nearly normal operators and give trace formulae for them.

Fuglede-Putnam theorem for class A operators

Salah Mecheri (2015)

Colloquium Mathematicae

Similarity:

Let A ∈ B(H) and B ∈ B(K). We say that A and B satisfy the Fuglede-Putnam theorem if AX = XB for some X ∈ B(K,H) implies A*X = XB*. Patel et al. (2006) showed that the Fuglede-Putnam theorem holds for class A(s,t) operators with s + t < 1 and they mentioned that the case s = t = 1 is still an open problem. In the present article we give a partial positive answer to this problem. We show that if A ∈ B(H) is a class A operator with reducing kernel and B* ∈ B(K) is a class 𝓨 operator,...

Generalized D-Symmetric Operators I

Bouali, S., Ech-chad, M. (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary: 47B47, 47B10; secondary 47A30. Let H be an infinite-dimensional complex Hilbert space and let A, B ∈ L(H), where L(H) is the algebra of operators on H into itself. Let δAB: L(H) → L(H) denote the generalized derivation δAB(X) = AX − XB. This note will initiate a study on the class of pairs (A,B) such that [‾(R(δAB))] = [‾(R(δB*A*))]; i.e. [‾(R(δAB))] is self-adjoint.