Displaying similar documents to “Two-dimensional real division algebras revisited.”

Dual commutative hyper K-ideals of type 1 in hyper K-algebras of order 3.

L. Torkzadeh, M. M. Zahedi (2006)

Mathware and Soft Computing

Similarity:

In this note we classify the bounded hyper K-algebras of order 3, which have D = {1}, D = {1,2} and D = {0,1} as a dual commutative hyper K-ideal of type 1. In this regard we show that there are such non-isomorphic bounded hyper K-algebras.

Symmetric Hochschild extension algebras

Yosuke Ohnuki, Kaoru Takeda, Kunio Yamagata (1999)

Colloquium Mathematicae

Similarity:

By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule H o m K ( A , K ) . We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of...

Dissident algebras

Ernst Dieterich (1999)

Colloquium Mathematicae

Similarity:

Given a euclidean vector space V = (V,〈〉) and a linear map η: V ∧ V → V, the anti-commutative algebra (V,η) is called dissident in case η(v ∧ w) ∉ ℝv ⊕ ℝw for each pair of non-proportional vectors (v,w) ∈ V 2 . For any dissident algebra (V,η) and any linear form ξ: V ∧ V → ℝ, the vector space ℝ × V, endowed with the multiplication (α,v)(β,w) = (αβ -〈v,w〉+ ξ(v ∧ w), αw + βv + η(v ∧ w)), is a quadratic division algebra. Up to isomorphism, each real quadratic division algebra arises in this...