Classification of 4-dimensional nilpotent complex Leibniz algebras.
Sergio Albeverio, Bakhrom A. Omirov, Isamiddin S. Rakhimov (2006)
Extracta Mathematicae
Similarity:
Sergio Albeverio, Bakhrom A. Omirov, Isamiddin S. Rakhimov (2006)
Extracta Mathematicae
Similarity:
Flaut, Cristina (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
L. Torkzadeh, M. M. Zahedi (2006)
Mathware and Soft Computing
Similarity:
In this note we classify the bounded hyper K-algebras of order 3, which have D = {1}, D = {1,2} and D = {0,1} as a dual commutative hyper K-ideal of type 1. In this regard we show that there are such non-isomorphic bounded hyper K-algebras.
Jerzy Białkowski (2004)
Open Mathematics
Similarity:
J. Monk (1993)
Banach Center Publications
Similarity:
Yosuke Ohnuki, Kaoru Takeda, Kunio Yamagata (1999)
Colloquium Mathematicae
Similarity:
By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule . We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of...
Ethier, Dillon, Lindberg, Tova, Luttman, Aaron (2010)
Annals of Functional Analysis (AFA) [electronic only]
Similarity:
Siddiqui, Akhlaq A. (2011)
The New York Journal of Mathematics [electronic only]
Similarity:
A. L. Barrenechea, C. C. Pena (2005)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Ernst Dieterich (1999)
Colloquium Mathematicae
Similarity:
Given a euclidean vector space V = (V,〈〉) and a linear map η: V ∧ V → V, the anti-commutative algebra (V,η) is called dissident in case η(v ∧ w) ∉ ℝv ⊕ ℝw for each pair of non-proportional vectors (v,w) ∈ . For any dissident algebra (V,η) and any linear form ξ: V ∧ V → ℝ, the vector space ℝ × V, endowed with the multiplication (α,v)(β,w) = (αβ -〈v,w〉+ ξ(v ∧ w), αw + βv + η(v ∧ w)), is a quadratic division algebra. Up to isomorphism, each real quadratic division algebra arises in this...
Dieterich, Ernst (2000)
AMA. Algebra Montpellier Announcements [electronic only]
Similarity:
Jakubíková-Studenovská, Danica, Mašulović, Dragan, Pöschel, Reinhard (2004)
Beiträge zur Algebra und Geometrie
Similarity: