Classification of 4-dimensional nilpotent complex Leibniz algebras.
Sergio Albeverio, Bakhrom A. Omirov, Isamiddin S. Rakhimov (2006)
Extracta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Sergio Albeverio, Bakhrom A. Omirov, Isamiddin S. Rakhimov (2006)
Extracta Mathematicae
Similarity:
Flaut, Cristina (2006)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
L. Torkzadeh, M. M. Zahedi (2006)
Mathware and Soft Computing
Similarity:
In this note we classify the bounded hyper K-algebras of order 3, which have D = {1}, D = {1,2} and D = {0,1} as a dual commutative hyper K-ideal of type 1. In this regard we show that there are such non-isomorphic bounded hyper K-algebras.
Jerzy Białkowski (2004)
Open Mathematics
Similarity:
J. Monk (1993)
Banach Center Publications
Similarity:
Yosuke Ohnuki, Kaoru Takeda, Kunio Yamagata (1999)
Colloquium Mathematicae
Similarity:
By an extension algebra of a finite-dimensional K-algebra A we mean a Hochschild extension algebra of A by the dual A-bimodule . We study the problem of when extension algebras of a K-algebra A are symmetric. (1) For an algebra A= KQ/I with an arbitrary finite quiver Q, we show a sufficient condition in terms of a 2-cocycle for an extension algebra to be symmetric. (2) Let L be a finite extension field of K. By using a given 2-cocycle of the K-algebra L, we construct a 2-cocycle of...
Ethier, Dillon, Lindberg, Tova, Luttman, Aaron (2010)
Annals of Functional Analysis (AFA) [electronic only]
Similarity:
Siddiqui, Akhlaq A. (2011)
The New York Journal of Mathematics [electronic only]
Similarity:
A. L. Barrenechea, C. C. Pena (2005)
Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques
Similarity:
Ernst Dieterich (1999)
Colloquium Mathematicae
Similarity:
Given a euclidean vector space V = (V,〈〉) and a linear map η: V ∧ V → V, the anti-commutative algebra (V,η) is called dissident in case η(v ∧ w) ∉ ℝv ⊕ ℝw for each pair of non-proportional vectors (v,w) ∈ . For any dissident algebra (V,η) and any linear form ξ: V ∧ V → ℝ, the vector space ℝ × V, endowed with the multiplication (α,v)(β,w) = (αβ -〈v,w〉+ ξ(v ∧ w), αw + βv + η(v ∧ w)), is a quadratic division algebra. Up to isomorphism, each real quadratic division algebra arises in this...
Dieterich, Ernst (2000)
AMA. Algebra Montpellier Announcements [electronic only]
Similarity:
Jakubíková-Studenovská, Danica, Mašulović, Dragan, Pöschel, Reinhard (2004)
Beiträge zur Algebra und Geometrie
Similarity: