Displaying similar documents to “Hypersurface geometry and Hamiltonian systems of hydrodynamic type.”

Improved Sufficient Conditions for Hamiltonian Properties

Jens-P. Bode, Anika Fricke, Arnfried Kemnitz (2015)

Discussiones Mathematicae Graph Theory

Similarity:

In 1980 Bondy [2] proved that a (k+s)-connected graph of order n ≥ 3 is traceable (s = −1) or Hamiltonian (s = 0) or Hamiltonian-connected (s = 1) if the degree sum of every set of k+1 pairwise nonadjacent vertices is at least ((k+1)(n+s−1)+1)/2. It is shown in [1] that one can allow exceptional (k+ 1)-sets violating this condition and still implying the considered Hamiltonian property. In this note we generalize this result for s = −1 and s = 0 and graphs that fulfill a certain connectivity...

Andrew Lenard: a mystery unraveled.

Praught, Jeffery, Smirnov, Roman G. (2005)

SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]

Similarity:

On the Edge-Hyper-Hamiltonian Laceability of Balanced Hypercubes

Jianxiang Cao, Minyong Shi, Lihua Feng (2016)

Discussiones Mathematicae Graph Theory

Similarity:

The balanced hypercube BHn, defined by Wu and Huang, is a variant of the hypercube network Qn, and has been proved to have better properties than Qn with the same number of links and processors. For a bipartite graph G = (V0 ∪ V1,E), we say G is edge-hyper-Hamiltonian laceable if it is Hamiltonian laceable, and for any vertex v ∈ Vi, i ∈ {0, 1}, any edge e ∈ E(G − v), there is a Hamiltonian path containing e in G − v between any two vertices of V1−i. In this paper, we prove that BHn...

A simple proof of the non-integrability of the first and the second Painlevé equations

Henryk Żołądek (2011)

Banach Center Publications

Similarity:

The first and the second Painlevé equations are explicitly Hamiltonian with time dependent Hamilton function. By a natural extension of the phase space one gets corresponding autonomous Hamiltonian systems in ℂ⁴. We prove that the latter systems do not have any additional algebraic first integral. In the proof equations in variations with respect to a parameter are used.