Displaying similar documents to “Quasimultipliers on F -algebras.”

Normed "upper interval" algebras without nontrivial closed subalgebras

C. J. Read (2005)

Studia Mathematica

Similarity:

It is a long standing open problem whether there is any infinite-dimensional commutative Banach algebra without nontrivial closed ideals. This is in some sense the Banach algebraists' counterpart to the invariant subspace problem for Banach spaces. We do not here solve this famous problem, but solve a related problem, that of finding (necessarily commutative) infinite-dimensional normed algebras which do not even have nontrivial closed subalgebras. Our examples are incomplete normed...

Multipliers of Uniform Topological Algebras

Mohammed El Azhari (2017)

Annales Mathematicae Silesianae

Similarity:

Let E be a complete uniform topological algebra with Arens-Michael normed factors [...] within an algebra isomorphism ϕ. If each factor Eα is complete, then every multiplier of E is continuous and ϕ is a topological algebra isomorphism where M(E) is endowed with its seminorm topology.

On the non-existence of norms for some algebras of functions

Bertram Yood (1994)

Studia Mathematica

Similarity:

Let C(Ω) be the algebra of all complex-valued continuous functions on a topological space Ω where C(Ω) contains unbounded functions. First it is shown that C(Ω) cannot have a Banach algebra norm. Then it is shown that, for certain Ω, C(Ω) cannot possess an (incomplete) normed algebra norm. In particular, this is so for Ω = n where ℝ is the reals.

Multipliers and hereditary subalgebras of operator algebras

Damon M. Hay (2011)

Studia Mathematica

Similarity:

We generalize some technical results of Glicksberg to the realm of general operator algebras and use them to give a characterization of open and closed projections in terms of certain multiplier algebras. This generalizes a theorem of J. Wells characterizing an important class of ideals in uniform algebras. The difficult implication in our main theorem is that if a projection is open in an operator algebra, then the multiplier algebra of the associated hereditary subalgebra arises as...