On elliptic diophantine equations that defy Thue's method: The case of the Ochoa curve.
Stroeker, Roel J., de Weger, Benjamin M.M. (1994)
Experimental Mathematics
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Stroeker, Roel J., de Weger, Benjamin M.M. (1994)
Experimental Mathematics
Similarity:
Stroeker, Roel J., Tzanakis, Nikos (1999)
Experimental Mathematics
Similarity:
Yasutsugu Fujita (2007)
Acta Arithmetica
Similarity:
J. Coates (1970)
Inventiones mathematicae
Similarity:
Wai Yan Pong, Roelof J. Stroeker (2012)
Acta Arithmetica
Similarity:
S. Akhtari, A. Togbé, P. G. Walsh (2008)
Acta Arithmetica
Similarity:
W. J. Ellison (1970-1971)
Séminaire de théorie des nombres de Bordeaux
Similarity:
H. Kleiman (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Yang Hai, P. G. Walsh (2010)
Acta Arithmetica
Similarity:
Ernst, Bruno (1996)
General Mathematics
Similarity:
Shin-ichi Katayama, Claude Levesque (2003)
Acta Arithmetica
Similarity:
Alan Filipin (2009)
Acta Arithmetica
Similarity:
Jianhua Chen (2001)
Acta Arithmetica
Similarity:
Levesque, C. (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Maciej Ulas (2007)
Colloquium Mathematicae
Similarity:
Let f ∈ ℚ [X] and deg f ≤ 3. We prove that if deg f = 2, then the diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial solutions in ℚ (t). In the case when deg f = 3 and f(X) = X(X²+aX+b) we show that for all but finitely many a,b ∈ ℤ satisfying ab ≠ 0 and additionally, if p|a, then p²∤b, the equation f(x)f(y) = f(z)² has infinitely many nontrivial solutions in rationals.
Pingzhi Yuan, Jiagui Luo (2010)
Acta Arithmetica
Similarity:
Pingzhi Yuan (2004)
Acta Arithmetica
Similarity: