Relationships between distance domination parameters.
Henning, Michael A., Oellermann, Ortrud R., Swart, Henda C. (1994)
Mathematica Pannonica
Similarity:
Henning, Michael A., Oellermann, Ortrud R., Swart, Henda C. (1994)
Mathematica Pannonica
Similarity:
Hansberg, Adriana, Meierling, Dirk, Volkmann, Lutz (2007)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Roger C. Entringer, Douglas E. Jackson, D. A. Snyder (1976)
Czechoslovak Mathematical Journal
Similarity:
Gary Chartrand, Ortrud R. Oellermann, Song Lin Tian, Hung Bin Zou (1989)
Časopis pro pěstování matematiky
Similarity:
Bohdan Zelinka (1976)
Mathematica Slovaca
Similarity:
Hamideh Aram, Sepideh Norouzian, Seyed Mahmoud Sheikholeslami (2013)
Discussiones Mathematicae Graph Theory
Similarity:
Let k be a positive integer, and let G be a simple graph with vertex set V (G). A k-distance Roman dominating function on G is a labeling f : V (G) → {0, 1, 2} such that for every vertex with label 0, there is a vertex with label 2 at distance at most k from each other. The weight of a k-distance Roman dominating function f is the value w(f) =∑v∈V f(v). The k-distance Roman domination number of a graph G, denoted by γkR (D), equals the minimum weight of a k-distance Roman dominating...