Displaying similar documents to “Rank computations for the congruent number elliptic curves.”

High rank eliptic curves of the form y = x + Bx.

Julián Aguirre, Fernando Castañeda, Juan Carlos Peral (2000)

Revista Matemática Complutense


Seven elliptic curves of the form y = x + B x and having rank at least 8 are presented. To find them we use the double descent method of Tate. In particular we prove that the curve with B = 14752493461692 has rank exactly 8.

Rank of elliptic curves associated to Brahmagupta quadrilaterals

Farzali Izadi, Foad Khoshnam, Arman Shamsi Zargar (2016)

Colloquium Mathematicae


We construct a family of elliptic curves with six parameters, arising from a system of Diophantine equations, whose rank is at least five. To do so, we use the Brahmagupta formula for the area of cyclic quadrilaterals (p³,q³,r³,s³) not necessarily representing genuine geometric objects. It turns out that, as parameters of the curves, the integers p,q,r,s along with the extra integers u,v satisfy u⁶+v⁶+p⁶+q⁶ = 2(r⁶+s⁶), uv = pq, which, by previous work, has infinitely many integer solutions. ...