The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Orthogonal harmonic analysis of fractal measures.”

κ-deformation, affine group and spectral triples

Bruno Iochum, Thierry Masson, Andrzej Sitarz (2012)

Banach Center Publications

Similarity:

A regular spectral triple is proposed for a two-dimensional κ-deformation. It is based on the naturally associated affine group G, a smooth subalgebra of C*(G), and an operator 𝓓 defined by two derivations on this subalgebra. While 𝓓 has metric dimension two, the spectral dimension of the triple is one. This bypasses an obstruction described in [35] on existence of finitely-summable spectral triples for a compactified κ-deformation.

Boolean algebras of projections and ranges of spectral measures

Okada S., Ricker W. J.

Similarity:

CONTENTSIntroduction...............................................................................51. Preliminaries.........................................................................72. Relative weak compactness of the range............................133. Closed spectral measures...................................................164. Spectral measures and B.a.'s of projections........................22References..............................................................................45 ...