Displaying similar documents to “Complex group algebras of finite groups: Brauer's problem 1.”

Isometries between groups of invertible elements in C*-algebras

Osamu Hatori, Keiichi Watanabe (2012)

Studia Mathematica

Similarity:

We describe all surjective isometries between open subgroups of the groups of invertible elements in unital C*-algebras. As a consequence the two C*-algebras are Jordan *-isomorphic if and only if the groups of invertible elements in those C*-algebras are isometric as metric spaces.

Structure of the unit group of the group algebras of non-metabelian groups of order 128

Navamanirajan Abhilash, Elumalai Nandakumar, Rajendra K. Sharma, Gaurav Mittal (2025)

Mathematica Bohemica

Similarity:

We characterize the unit group for the group algebras of non-metabelian groups of order 128 over the finite fields whose characteristic does not divide the order of the group. Up to isomorphism, there are 2328 groups of order 128 and only 14 of them are non-metabelian. We determine the Wedderburn decomposition of the group algebras of these non-metabelian groups and subsequently characterize their unit groups.

On B-algebras

J. Neggers, Hee Sik Kim (2002)

Matematički Vesnik

Similarity:

A classification of symmetric algebras of strictly canonical type

Marta Kwiecień, Andrzej Skowroński (2009)

Colloquium Mathematicae

Similarity:

In continuation of our article in Colloq. Math. 116.1, we give a complete description of the symmetric algebras of strictly canonical type by quivers and relations, using Brauer quivers.