Recent research in affine differential geometry.
Soare, Nicolae (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Soare, Nicolae (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Soare, Nicolae (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Cruceanu, Vasile (2005)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Asher Wagner (1965)
Mathematische Zeitschrift
Similarity:
Judita Cofman (1967)
Mathematische Zeitschrift
Similarity:
T. Kambayashi (1979)
Inventiones mathematicae
Similarity:
Heinz Lüneburg (1962)
Mathematische Zeitschrift
Similarity:
Takashi Kurose (1990)
Mathematische Zeitschrift
Similarity:
Baumeister, Barbara, Del Fra, Alberto, Meixner, Thomas, Pasini, Antonio (1996)
Beiträge zur Algebra und Geometrie
Similarity:
Blažev, Sunčica, Cigić, Vlado (2007)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Józef Joachim Telega (1977)
Annales Polonici Mathematici
Similarity:
Karáné, G.S. (1994)
Beiträge zur Algebra und Geometrie
Similarity:
Buekenhout, F., Huybrechts, C., Pasini, A. (1994)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Similarity:
Wanda Szmielew
Similarity:
CONTENTSForeword............................................................................................................................................. 5Introduction......................................................................................................................................... 7Chapter I. n-ary equivalence relations........................................................................................... 8Chapter II. Application of n-ary equivalence relations...
Janko Marovt (2006)
Studia Mathematica
Similarity:
Let 𝒳 be a compact Hausdorff space which satisfies the first axiom of countability, I = [0,1] and 𝓒(𝒳,I) the set of all continuous functions from 𝒳 to I. If φ: 𝓒(𝒳,I) → 𝓒(𝒳,I) is a bijective affine map then there exists a homeomorphism μ: 𝒳 → 𝒳 such that for every component C in 𝒳 we have either φ(f)(x) = f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C, or φ(f)(x) = 1-f(μ(x)), f ∈ 𝓒(𝒳,I), x ∈ C.