A continuation theorem for holomorphic mapping into a Hilbert space
M. Skwarczyński (1970)
Annales Polonici Mathematici
Similarity:
M. Skwarczyński (1970)
Annales Polonici Mathematici
Similarity:
Shamoyan, Romi, Li, Songxiao (2008)
Banach Journal of Mathematical Analysis [electronic only]
Similarity:
Peter Pflug (2003)
Annales Polonici Mathematici
Similarity:
This note is an attempt to describe a part of the historical development of the research on separately holomorphic functions.
J. A. Cima, J. A. Pfaltzgraff (1983)
Annales Polonici Mathematici
Similarity:
Ludwik M. Drużkowski (1983)
Annales Polonici Mathematici
Similarity:
M. Nikić (1988)
Matematički Vesnik
Similarity:
Ludwik M. Drużkowski (1980)
Annales Polonici Mathematici
Similarity:
Armen Edigarian, Said El Marzguioui, Jan Wiegerinck (2010)
Annales Polonici Mathematici
Similarity:
We prove that the image of a finely holomorphic map on a fine domain in ℂ is a pluripolar subset of ℂⁿ. We also discuss the relationship between pluripolar hulls and finely holomorphic functions.
P. Pflug (1985)
Matematički Vesnik
Similarity:
Joji Kajiwara (1974)
Czechoslovak Mathematical Journal
Similarity:
M. Mateljević (1986)
Matematički Vesnik
Similarity:
Maciej P. Denkowski (2007)
Annales Polonici Mathematici
Similarity:
We begin this article with a graph theorem and a kind of Nullstellensatz for weakly holomorphic functions. This yields a general Nullstellensatz for c-holomorphic functions on locally irreducible sets. In Section 2 some methods of Płoski-Tworzewski permit us to prove an effective Nullstellensatz for c-holomorphic functions in the case of a proper intersection with the degree of the intersection cycle as exponent. We also extend this result to the case of isolated improper intersection,...
Marek Jarnicki
Similarity:
CONTENTS§1. Introduction.................................................................................................................5§2. Basic properties of δ-tempered holomorphic functions...............................................8§3. Holomorphic continuation and holomorphic retractions.............................................20§4. Continuation from regular neighbourhoods...............................................................32§5. Continuation from δ-regular submanifolds;...