Intersecting pencil of hyperbolic circles
R. Krasnodębski (1970)
Colloquium Mathematicae
Similarity:
R. Krasnodębski (1970)
Colloquium Mathematicae
Similarity:
Michał Kisielewicz (1975)
Annales Polonici Mathematici
Similarity:
Avalishvili, G., Gordeziani, D. (1999)
Bulletin of TICMI
Similarity:
Sudhanshu K. Ghoshal, Abha Ghoshal, M. Abu-Masood (1977)
Annales Polonici Mathematici
Similarity:
Robert Meyerhoff (1986)
Commentarii mathematici Helvetici
Similarity:
J. Kisyński (1970)
Colloquium Mathematicae
Similarity:
Jan Dymara, Damian Osajda (2007)
Fundamenta Mathematicae
Similarity:
We prove that the boundary of a right-angled hyperbolic building is a universal Menger space. As a consequence, the 3-dimensional universal Menger space is the boundary of some Gromov-hyperbolic group.
Demirel, Oğuzhan, Soytürk, Emine (2008)
Novi Sad Journal of Mathematics
Similarity:
Wancang Ma, David Minda (1994)
Annales Polonici Mathematici
Similarity:
We investigate univalent holomorphic functions f defined on the unit disk 𝔻 such that f(𝔻) is a hyperbolically convex subset of 𝔻; there are a number of analogies with the classical theory of (euclidean) convex univalent functions. A subregion Ω of 𝔻 is called hyperbolically convex (relative to hyperbolic geometry on 𝔻) if for all points a,b in Ω the arc of the hyperbolic geodesic in 𝔻 connecting a and b (the arc of the circle joining a and b which is orthogonal to the unit circle)...
Douglas Dunham (1999)
Visual Mathematics
Similarity:
Oğuzhan Demirel (2009)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In [Comput. Math. Appl. 41 (2001), 135--147], A. A. Ungar employs the Möbius gyrovector spaces for the introduction of the hyperbolic trigonometry. This Ungar's work plays a major role in translating some theorems from Euclidean geometry to corresponding theorems in hyperbolic geometry. In this paper we explore the theorems of Stewart and Steiner in the Poincaré disc model of hyperbolic geometry.
Romanov, V. G. (2003)
Sibirskij Matematicheskij Zhurnal
Similarity: