Rational points on the modular curves
Fumiyuki Momose (1984)
Compositio Mathematica
Similarity:
Fumiyuki Momose (1984)
Compositio Mathematica
Similarity:
Keisuke Arai, Fumiyuki Momose (2012)
Acta Arithmetica
Similarity:
Matt DeLong (2002)
Acta Arithmetica
Similarity:
J. Achari (1978)
Matematički Vesnik
Similarity:
Petroula Dospra (2023)
Archivum Mathematicum
Similarity:
In this paper we consider rational Bézier curves with control points having rational coordinates and rational weights, and we give necessary and sufficient conditions for such a curve to have infinitely many points with integer coefficients. Furthermore, we give algorithms for the construction of these curves and the computation of theirs points with integer coefficients.
Dimitrios Poulakis (2003)
Acta Arithmetica
Similarity:
Fenske, Torsten (1999)
Beiträge zur Algebra und Geometrie
Similarity:
Daeyeol Jeon, Chang Heon Kim (2004)
Acta Arithmetica
Similarity:
François Brunault (2008)
Acta Arithmetica
Similarity:
J. Achari (1979)
Publications de l'Institut Mathématique
Similarity:
Matusevich, Laura Felicia (2000)
Beiträge zur Algebra und Geometrie
Similarity:
Andreas Enge, Reinhard Schertz (2005)
Acta Arithmetica
Similarity:
J. Siciak (1962)
Annales Polonici Mathematici
Similarity:
Krystyna Ziętak (1974)
Applicationes Mathematicae
Similarity:
Hwajong Yoo (2016)
Acta Arithmetica
Similarity:
Let p be a prime greater than 3. Consider the modular curve X₀(3p) over ℚ and its Jacobian variety J₀(3p) over ℚ. Let (3p) and (3p) be the group of rational torsion points on J₀(3p) and the cuspidal group of J₀(3p), respectively. We prove that the 3-primary subgroups of (3p) and (3p) coincide unless p ≡ 1 (mod 9) and .