Quasiconformal groups acting on that are not quasiconformally conjugate to Möbius groups.
Ghamsari, Manouchehr (1995)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Ghamsari, Manouchehr (1995)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Mayer, Volker (1993)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Gong, Jianhua (2008)
Acta Mathematica Academiae Paedagogicae Nyí regyháziensis. New Series [electronic only]
Similarity:
Astala, Kari (1998)
Documenta Mathematica
Similarity:
Rohde, S. (1997)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Kühnau, Reiner (1996)
Annales Academiae Scientiarum Fennicae. Series A I. Mathematica
Similarity:
Reich, Edgar (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Hidetaka Hamada, Gabriela Kohr (2003)
Annales Polonici Mathematici
Similarity:
Let f(z,t) be a Loewner chain on the Euclidean unit ball B in ℂⁿ. Assume that f(z) = f(z,0) is quasiconformal. We give a sufficient condition for f to extend to a quasiconformal homeomorphism of onto itself.
Curt, Paula, Kohr, Gabriela (2008)
Journal of Inequalities and Applications [electronic only]
Similarity:
Sugawa, Toshiyuki (2002)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity:
Luděk Kleprlík (2014)
Open Mathematics
Similarity:
Let Ω ⊂ ℝn be an open set and X(Ω) be any rearrangement invariant function space close to L q(Ω), i.e. X has the q-scaling property. We prove that each homeomorphism f which induces the composition operator u ↦ u ℴ f from W 1 X to W 1 X is necessarily a q-quasiconformal mapping. We also give some new results for the sufficiency of this condition for the composition operator.
Curt McMullen (1989)
Inventiones mathematicae
Similarity:
Reiner Kühnau (2011)
Annales UMCS, Mathematica
Similarity:
We study a dual analogue of the class Σ(κ) of hydrodynamically normalized schlicht conformal mappings g(z) of the exterior of the unit circle with a [...] -quasiconformal extension, namely now those (non-schlicht) mappings g(z) for which g(z) has such a quasiconformal extension.
Zakeri, Saeed (2004)
Annales Academiae Scientiarum Fennicae. Mathematica
Similarity: