### On decomposable fully transitive torsion-free groups.

Chekhlov, A.R. (2001)

Sibirskij Matematicheskij Zhurnal

Similarity:

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

Chekhlov, A.R. (2001)

Sibirskij Matematicheskij Zhurnal

Similarity:

Hatcher, Allan, Vogtmann, Karen, Wahl, Natalie (2006)

Algebraic & Geometric Topology

Similarity:

Lawson, Tyler (2006)

Algebraic & Geometric Topology

Similarity:

Sakasai, Takuya (2006)

Algebraic & Geometric Topology

Similarity:

Hutchings, Michael, Sullivan, Michael (2006)

Geometry & Topology

Similarity:

Pyatkov, S.G., Abasheeva, N.L. (2002)

Sibirskij Matematicheskij Zhurnal

Similarity:

Popov, A.M. (2006)

Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]

Similarity:

Lüneburg, Heinz (1987)

Séminaire Lotharingien de Combinatoire [electronic only]

Similarity:

Knyazev, O.V. (2005)

Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]

Similarity:

Calegari, Frank, Dunfield, Nathan M. (2006)

Geometry & Topology

Similarity:

Baskakov, A.G., Pastukhov, A.I. (2001)

Sibirskij Matematicheskij Zhurnal

Similarity:

Popov, A.M. (2006)

Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]

Similarity:

Kenzi Satô (1998)

Acta Arithmetica

Similarity:

For every positive rational number q, we find a free group of rotations of rank 2 acting on (√q𝕊²) ∩ ℚ³ whose all elements distinct from the identity have no fixed point.

Ballester-Bolinches, Adolfo, Calvo, Clara (2009)

Sibirskij Matematicheskij Zhurnal

Similarity:

Wojciech Andrzejewski, Aleksiej Tralle (1994)

Fundamenta Mathematicae

Similarity:

We study cohomology algebras of graded differential algebras which are models for Hochschild homology of some classes of topological spaces (e.g. homogeneous spaces of compact Lie groups). Explicit formulae are obtained. Some applications to cyclic homology are given.

R. Berr, Françoise Delon, J. Schmid (1999)

Fundamenta Mathematicae

Similarity:

We prove that on the basis of ZF the ultrafilter theorem and the theorem of Artin-Schreier are equivalent. The latter says that every formally real field admits a total order.