Finite p'-nilpotent groups. I.
Srinivasan, S. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Srinivasan, S. (1987)
International Journal of Mathematics and Mathematical Sciences
Similarity:
C. Watkiss (1976)
Publications du Département de mathématiques (Lyon)
Similarity:
S. Ilić (1986)
Matematički Vesnik
Similarity:
J. Janas (1982)
Colloquium Mathematicae
Similarity:
Ernest Płonka (1974)
Colloquium Mathematicae
Similarity:
Irene Llerena (1984/85)
Mathematische Zeitschrift
Similarity:
Đoković, Dragomir Ž. (2000)
Journal of Lie Theory
Similarity:
Luis A. Cordero, Marisa Fernández, Alfred Gray, Luis Ugarte (2001)
RACSAM
Similarity:
Este artículo presenta un panorama de algunos resultados recientes sobre estructuras complejas nilpotentes J definidas sobre nilvariedades compactas. Tratamos el problema de clasificación de nilvariedades compactas que admiten una tal J, el estudio de un modelo minimal de Dolbeault y su formalidad, y la construcción de estructuras complejas nilpotentes para las cuales la sucesión espectral de Frölicher no colapsa en el segundo término.
Vikas Bist (1991)
Publicacions Matemàtiques
Similarity:
Let U(RG) be the unit group of the group ring RG. Groups G such that U(RG) is FC-nilpotent are determined, where R is the ring of integers Z or a field K of characteristic zero.
Ian Hawthorn (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
In an earlier paper distributors were defined as a measure of how close an arbitrary function between groups is to being a homomorphism. Distributors generalize commutators, hence we can use them to try to generalize anything defined in terms of commutators. In this paper we use this to define a generalization of nilpotent groups and explore its basic properties.
Israel N. Herstein (1986)
Revista Matemática Iberoamericana
Similarity:
A well-known theorem due to Kolchin states that a semi-group G of unipotent matrices over a field F can be brought to a triangular form over the field F [4, Theorem H]. Recall that a matrix A is called unipotent if its only eigenvalue is 1, or, equivalently, if the matrix I - A is nilpotent. Many years ago I noticed that this result of Kolchin is an immediate consequence of a too-little known result due to Wedderburn [6]. This result of Wedderburn asserts that if B is a finite...
Peter Hilton, Robert Militello (1992)
Publicacions Matemàtiques
Similarity:
We identify two generalizations of the notion of a finitely generated nilpotent. Thus a nilpotent group G is fgp if Gp is fg as p-local group for each p; and G is fg-like if there exists a fg nilpotent group H such that Gp ≅ Hp for all p. The we have proper set-inclusions: {fg} ⊂ {fg-like} ⊂ {fgp}. We examine the extent to which fg-like nilpotent groups satisfy the axioms for...
G. Mislin, K. Varadarajan (1979)
Inventiones mathematicae
Similarity: