Quantizations of braided derivations. I: Monoidal categories.
Huru, H.L. (2006)
Lobachevskii Journal of Mathematics
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Huru, H.L. (2006)
Lobachevskii Journal of Mathematics
Similarity:
Thom, Andreas (2011)
Theory and Applications of Categories [electronic only]
Similarity:
Carrasco, P., Garzon, A.R., Vitale, E.M. (2006)
Theory and Applications of Categories [electronic only]
Similarity:
Robert Gordon (1993)
Cahiers de Topologie et Géométrie Différentielle Catégoriques
Similarity:
Gigel Militaru (2010)
Open Mathematics
Similarity:
We call a monoidal category C a Serre category if for any C, D ∈ C such that C ⊗ D is semisimple, C and D are semisimple objects in C. Let H be an involutory Hopf algebra, M, N two H-(co)modules such that M ⊗ N is (co)semisimple as a H-(co)module. If N (resp. M) is a finitely generated projective k-module with invertible Hattory-Stallings rank in k then M (resp. N) is (co)semisimple as a H-(co)module. In particular, the full subcategory of all finite dimensional modules, comodules or...
Gabriella D'Este, Dieter Happel (1990)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Schauenburg, Peter (2000)
The New York Journal of Mathematics [electronic only]
Similarity:
Golasiński, Marek (2000)
Theory and Applications of Categories [electronic only]
Similarity:
Brown, Ronald, Wensley, Christopher D. (1996)
Theory and Applications of Categories [electronic only]
Similarity:
A. M. Vieites Rodríguez, J. M. Casas Mirás (1999)
Extracta Mathematicae
Similarity: