Displaying similar documents to “The Lebesgue decomposition theorem for generalized measures.”

Classification systems and their lattice

Sándor Radeleczki (2002)

Discussiones Mathematicae - General Algebra and Applications


We define and study classification systems in an arbitrary CJ-generated complete lattice L. Introducing a partial order among the classification systems of L, we obtain a complete lattice denoted by Cls(L). By using the elements of the classification systems, another lattice is also constructed: the box lattice B(L) of L. We show that B(L) is an atomistic complete lattice, moreover Cls(L)=Cls(B(L)). If B(L) is a pseudocomplemented lattice, then every classification system of L is independent...

Approximations of lattice-valued possibilistic measures

Ivan Kramosil (2005)



Lattice-valued possibilistic measures, conceived and developed in more detail by G. De Cooman in 1997 [2], enabled to apply the main ideas on which the real-valued possibilistic measures are founded also to the situations often occurring in the real world around, when the degrees of possibility, ascribed to various events charged by uncertainty, are comparable only quantitatively by the relations like “greater than” or “not smaller than”, including the particular cases when such degrees...

Dual Lattice of ℤ-module Lattice

Yuichi Futa, Yasunari Shidama (2017)

Formalized Mathematics


In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic...