Displaying similar documents to “Extended Stokes' problems for relatively moving porous half-planes.”

On fully developed flows of fluids with a pressure dependent viscosity in a pipe

Macherla Vasudevaiah, Kumbakonam R. Rajagopal (2005)

Applications of Mathematics

Similarity:

Stokes recognized that the viscosity of a fluid can depend on the normal stress and that in certain flows such as flows in a pipe or in channels under normal conditions, this dependence can be neglected. However, there are many other flows, which have technological significance, where the dependence of the viscosity on the pressure cannot be neglected. Numerous experimental studies have unequivocally shown that the viscosity depends on the pressure, and that this dependence can be quite...

On various types of viscous two-fluid flows

Jürgen Socolowsky (2008)

Banach Center Publications

Similarity:

Viscous two-fluid flows arise in different kinds of coating technologies. Frequently, the corresponding mathematical models represent two-dimensional free boundary value problems for the Navier-Stokes equations or their modifications. In this review article we present some results about nonisothermal stationary as well as about isothermal evolutionary viscous flow problems. The temperature-depending problems are characterized by coupled heat- and mass transfer and also by thermocapillary...

On using artificial compressibility method for solving turbulent flows

Louda, Petr, Kozel, Karel, Příhoda, Jaromír

Similarity:

In this work, artificial compressibility method is used to solve steady and unsteady flows of viscous incompressible fluid. The method is based on implicit higher order upwind discretization of Navier-Stokes equations. The extension for unsteady simulation is considered by increasing artificial compressibility parameter or by using dual time stepping. The methods are tested on laminar flow around circular cylinder and used to simulate turbulent unsteady flows by URANS approach. The simulated...

Isogeometric analysis for fluid flow problems

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Michálková, Kristýna, Turnerová, Eva

Similarity:

The article is devoted to the simulation of viscous incompressible fluid flow based on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical approach. Primary goal of using isogemetric analysis is to be always geometrically exact, independently of the discretization, and to avoid a time-consuming generation of meshes of computational domains. For higher Reynolds numbers, we use stabilization techniques SUPG and PSPG. All methods mentioned in the paper are...