The automorphism group of linear sections of the Grassmannians .
Piontkowski, J., Van de Ven, A. (1999)
Documenta Mathematica
Similarity:
Piontkowski, J., Van de Ven, A. (1999)
Documenta Mathematica
Similarity:
Richard Byrd, Justin Lloyd, Franklin Pederson, James Stepp (1984)
Fundamenta Mathematicae
Similarity:
Marek Karaś (2011)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
Let d₃ ≥ p₂ > p₁ ≥ 3 be integers such that p₁,p₂ are prime numbers. We show that the sequence (p₁,p₂,d₃) is the multidegree of some tame automorphism of ℂ³ if and only if d₃ ∈ p₁ℕ + p₂ℕ, i.e. if and only if d₃ is a linear combination of p₁ and p₂ with coefficients in ℕ.
Robert P. Sullivan (1985)
Czechoslovak Mathematical Journal
Similarity:
J. K. Truss (2009)
Fundamenta Mathematicae
Similarity:
Let (C,R) be the countable dense circular ordering, and G its automorphism group. It is shown that certain properties of group elements are first order definable in G, and these results are used to reconstruct C inside G, and to demonstrate that its outer automorphism group has order 2. Similar statements hold for the completion C̅.
Brunella, Marco (1999)
Documenta Mathematica
Similarity:
Federico Menegazzo (1993)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Fuhrken, G. (1973)
Portugaliae mathematica
Similarity:
Robert Wolak (1986)
Annales Polonici Mathematici
Similarity:
L. Varecza (1979)
Matematički Vesnik
Similarity:
J. Płonka (1979)
Colloquium Mathematicae
Similarity: