The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Continuous g -frame in Hilbert C * -modules.”

Subsequences of frames

R. Vershynin (2001)

Studia Mathematica

Similarity:

Every frame in Hilbert space contains a subsequence equivalent to an orthogonal basis. If a frame is n-dimensional then this subsequence has length (1 - ε)n. On the other hand, there is a frame which does not contain bases with brackets.

On full Hilbert C * -modules.

Moslehian, Mohammad Sal (2001)

Bulletin of the Malaysian Mathematical Sciences Society. Second Series

Similarity:

Covariant version of the Stinespring type theorem for Hilbert C*-modules

Maria Joiţa (2011)

Open Mathematics

Similarity:

In this paper, we prove a covariant version of the Stinespring theorem for Hilbert C*-modules. Also, we show that there is a bijective correspondence between operator valued completely positive maps, (u′, u)-covariant with respect to the dynamical system (G, η, X) on Hilbert C*-modules and (u′, u)-covariant operator valued completely positive maps on the crossed product G ×η X of X by η.

Projective Hilbert A(D)-modules.

Carlson, Jon F., Clark, Douglas N., Foias, Ciprian, Williams, J.P. (1994)

The New York Journal of Mathematics [electronic only]

Similarity: