A reciprocity theorem for domino tilings.
Propp, James (2001)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Propp, James (2001)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Ekedahl, Torsten (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Czabarka, Éva, Sýkora, Ondrej, Székely, László A., Vrt'o, Imrich (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Bolobás, Béla, Riordan, Oliver (2000)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Loebl, Martin (2002)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Cariolaro, David, Fu, Hung-Lin (2009)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Schauz, Uwe (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Janvresse, É., de la Rue, T., Velenik, Y. (2006)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Muhammad Javaid (2014)
Discussiones Mathematicae Graph Theory
Similarity:
In 1980, Enomoto et al. proposed the conjecture that every tree is a super (a, 0)-edge-antimagic total graph. In this paper, we give a partial sup- port for the correctness of this conjecture by formulating some super (a, d)- edge-antimagic total labelings on a subclass of subdivided stars denoted by T(n, n + 1, 2n + 1, 4n + 2, n5, n6, . . . , nr) for different values of the edge- antimagic labeling parameter d, where n ≥ 3 is odd, nm = 2m−4(4n+1)+1, r ≥ 5 and 5 ≤ m ≤ r.
Caselli, F., Krattenthaler, C., Lass, B., Nadeau, P. (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Kuperberg, Greg (1998)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Barequet, Gill, Goodrich, Michael T., Riley, Chris (2004)
Journal of Graph Algorithms and Applications
Similarity:
Felsner, Stefan, Zickfeld, Florian (2008)
The Electronic Journal of Combinatorics [electronic only]
Similarity: