The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Field theory and KAM tori.”

Supersymmetry and Ghosts in Quantum Mechanics

Robert, Didier (2008)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 81Q60, 35Q40. A standard supersymmetric quantum system is defined by a Hamiltonian [^H] = ½([^Q]*[^Q] +[^Q][^Q]*), where the super-charge [^Q] satisfies [^Q]2 = 0, [^Q] commutes with [^H]. So we have [^H] ≥ 0 and the quantum spectrum of [^H] is non negative. On the other hand Pais-Ulhenbeck proposed in 1950 a model in quantum-field theory where the d'Alembert operator [¯] = [(∂2)/( ∂t2)] − Δx is replaced by fourth order operator [¯]([¯]...

Application of linear hyperbolic PDE to linear quantum fields in curved spacetimes : especially black holes, time machines and a new semi-local vacuum concept

Bernard Kay (2000)

Journées équations aux dérivées partielles

Similarity:

Several situations of physical importance may be modelled by linear quantum fields propagating in fixed spacetime-dependent classical background fields. For example, the quantum Dirac field in a strong and/or time-dependent external electromagnetic field accounts for the creation of electron-positron pairs out of the vacuum. Also, the theory of linear quantum fields propagating on a given background curved spacetime is the appropriate framework for the derivation of black-hole evaporation...

Positive energy quantization of linear dynamics

Jan Dereziński, Christian Gérard (2010)

Banach Center Publications

Similarity:

The abstract mathematical structure behind the positive energy quantization of linear classical systems is described. It is separated into three stages: the description of a classical system, the algebraic quantization and the Hilbert space quantization. Four kinds of systems are distinguished: neutral bosonic, neutral bosonic, charged bosonic and charged fermionic. The formalism that is described follows closely the usual constructions employed in quantum physics to introduce noninteracting...